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Abstract

Acute myeloid leukemia (AML) is a malignant hematopoietic
disease and the most common type of acute leukemia in adults.
The mechanisms underlying drug resistance in AML are poorly
understood. Activating mutations in FMS-like tyrosine kinase 3
(FLT3) are the most common molecular abnormality in AML.
Quizartinib (AC220) is a potent and selective second-generation
inhibitor of FLT3. It is in clinical trials for the treatment of relapsed
or refractory FLT3-ITD–positive and –negative AML patients and
as maintenance therapy. To understand the mechanisms of drug
resistance to AC220, we undertook an unbiased approach with a
novel CRISPR-pooled library to screen new genes whose loss of
function confers resistance to AC220. We identified SPRY3, an
intracellular inhibitor of FGF signaling, and GSK3, a canonical

Wnt signaling antagonist, and demonstrated reactivation of
downstream FGF/Ras/ERK and Wnt signaling as major mechan-
isms of resistance to AC220. We confirmed these findings in
primary AML patient samples. Expression of SPRY3 and GSK3A
was dramatically reduced in AC220-resistant AML samples, and
SPRY3-deleted primary AML cells were resistant to AC220.
Intriguingly, expression of SPRY3 was greatly reduced in GSK3
knockout AML cells, which positioned SPRY3 downstream of
GSK3 in the resistance pathway. Taken together, our study
identified novel genes whose loss of function conferred resis-
tance to a selective FLT3 inhibitor, providing new insight into
signaling pathways that contribute to acquired resistance in AML.
Cancer Res; 77(16); 4402–13. �2017 AACR.

Introduction
Acute myeloid leukemia (AML) is a progressive malignant

disease of the bone marrow and blood. FMS-like tyrosine kinase
3 (FLT3) is a protein kinase receptor that is expressed on the
surface of many hematopoietic progenitor cells. FLT3 gene is one
of the most frequently mutated genes in AML (1–3). Internal
tandem duplication (ITD) of the FLT3 gene is a gain-of-function

mutation common in AML. It is associated with worse prognosis
and adverse disease outcome (4–7). Mechanistically, FLT3-ITD
mutations result in loss of the autoinhibitory function and
subsequent constitutive activation of FLT3 kinase as well as
its downstream proliferative signaling pathways, including the
Ras/MAPK/ERK, STAT5, and PI3K/Akt/mTOR pathways (8–10).
Clinically, FLT3-ITD mutations are present in roughly 20% of
adult AML cases. In majority of the cases, it is a de novo mutation
with patients presenting a high leukocyte count with normal
cytogenetics. Numerous clinical trial studies have established that
patients with FLT3-ITD are far more likely to relapse and do so
more rapidly than their FLT3wild-type counterparts. The median
survival of FLT3-mutant AML patients after first relapse has been
reported to be <5 months (11–13).

The poor prognosis of patients harboring FLT3 mutations
renders FLT3 as an obvious target of therapy. A number of
small-molecule tyrosine kinase inhibitors (TKI) with activity
against FLT3 have now been identified and some are currently
in clinical trials (12, 14, 15). Quizartinib (AC220) is a once-daily,
orally administered, potent, and selective second-generation
inhibitor of FLT3. It is currently under clinical trials for the
treatment of relapsed or refractory FLT3-ITD–positive and –neg-
ative AML patients and as a maintenance therapy. Importantly,
even though no FLT3 inhibitors are approved for clinical use,
several resistant mechanisms of FLT3 inhibitors have been
reported through the early clinical studies (16, 17).

Sprouty proteins were first identified in Drosophila by genetic
screens as modulators of tracheal and eye development. Several
initial elegant studies have demonstrated that Drosophila Sprouty
inhibits receptor tyrosine kinases (RTK)-mediated Ras signaling.
Later, studies inmammalian systems also revealed crucial roles for
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Sprouty in various developmental and physiological processes as
well as cancer development, progression, andmetastasis (18–20).
There are four members in the mammalian Sprouty family,
SPRY1-4. Previous studies implicated Sprouty 1, 2, and 4 in stem
cell maintenance, development, and cancers (21–23). However,
very little is known about SPRY3.

Glycogen synthase kinase 3 (GSK3) is a serine/threonine pro-
tein kinase first identified as the kinase that phosphorylates and
inhibits glycogen synthase. It was later discovered to regulate
multiple substrates and is implicated in many cellular processes
including embryo development, cell-cycle regulation, cell prolif-
eration, and differentiation (24, 25). The mammalian GSK3 is
encoded by two known genes, GSK3A and GSK3B. GSK3 is a
negative regulator of several other signaling pathways, includ-
ing Wnt, Notch, and PI3K/Akt/mTOR signaling; inhibition of
GSK3 by inhibitors activates these pathways (24–26).

Although great success has been achieved in the last three
decades in AML therapy, one major obstacle in the treatment of
leukemia is drug resistance (27, 28). Studies on the mechanisms
ofAMLdrug resistancewill yield important information about the
signaling pathways of leukemia pathogenesis as well as how to
circumvent this resistance and improve efficacy of anti-AML drugs
(29, 30). Here, we reported a genome-wide CRISPR screen for
mutations that confer resistance to a selective FLT3 inhibitor
AC220. We found that loss-of-function mutations in SPRY3 and
GSK3 cause resistance to AC220 in AML cells and that reactivation
of downstream signaling in the Wnt and Ras/MAPK pathways is
themajormechanismof AC220 resistance conferred byGSK3 and
SPRY3 deletions.

Materials and Methods
CRISPR screen and sgRNAs construction

GeCKO library was purchased from Addgene (#1000000048),
amplified, and packaged as lentivirus based on the instructions on
Addgene website. The loss-of-function screen was carried out as
described (31). MV4-11 cells were transduced with lentivirus
carrying GeCKO library, and puromycin selection was performed
for 2 days. Then we treated transduced MV4-11 cells with AC220
for 14 days and the survived cells were harvested. The genomic
DNAwas extracted and PCRwas carried out before deep sequenc-
ing of sgRNA sequence in the survived cells genome. All deep
sequencing data are available at GEO (series accession number
GSE98612). For data analysis, we calculated the enrichment score
as: The enrichment score ¼ (sgRNA number from the reads)/
(sgRNA number in the library) X log2 (average abundance). The
sgRNAs used for validations were synthesized and constructed as
described (31). Primer sequences are shown in Supplementary
Table S3.

Cell lines and patient samples
Ba/F3-ITD and Ba/F3 lines were a kind gift from Drs. James

D. Griffin and Ellen Weisberg at Dana Farber Cancer Institute
(Boston, MA) and Dr. Stephen Sykes at Fox Chase Cancer Center
(Philadelphia, PA) in 2015. MV4-11 line was kindly provided
by Dr. Martin Carroll at the University of Pennsylvania
(Philadelphia, PA) in 2014. MV4-11 cells were maintained in
RPMI 1640 supplemented with 10% FBS and 1% penicillin/
streptomycin. The IL3-dependent murine pro-B cell line Ba/F3
was cultured in RPMI 1640 supplemented 10% FBS and 10 ng/ml
IL3 and 1% penicillin/streptomycin. All cell lines were analyzed

and authenticated by morphologic inspection and biochemical
examination of the FLT3-ITD pathway as well as short tandem
repeat profiling analysis. Mycoplasma testing was also performed
to exclude the possibility ofmycoplasma contamination of all cell
lines. The frozen patient samples were obtained from Xenograft
core facility of the University of Pennsylvania, and written
informed consent was obtained from the patients, the studies
were conducted in accordance with recognized ethical guidelines,
and that the studies were approved by the University of Pennsyl-
vania and Temple review board. For culturing primary AML cells,
cells were thawed quickly and resuspended in 10 mL cold RPMI
1640with 2%HI FBS and centrifuged at 2,000 rpm for 5minutes.
Cellswere incubated for 4hours andfilteredwith40mmfilter, then
resuspended in 12mL RPMI 1640 supplementedwith 2%HI FBS,
and plated in a 6-well plate.

Lentiviral packaging and transduction
Lentivirus was packaged as previously described (32). For

transduction, 0.5 million MV4-11 cells were seeded in 12-well
plate coated with 8 mg/mL polybrene (Sigma-Aldrich) and trans-
duced with the lentivirus at a multiplicity of infection (MOI) of
0.3 or 20, and then the cells were centrifuged at 1,200 g for 2 hours
at room temperature and cultured for another 2 hours in the
incubator. After 2 hours, medium was changed (RPMI 1640
supplemented with 10% FBS).

Primary AML cells transfection
For patient primary cells, the cells were prestimulated with

cytokines for 36 hours and nucleotransfected with the P3 Primary
Cell 4D-Nucleofector X Kit (V4XP-3012) in antibiotics-free medi-
umafter prestimulation. In brief, 2� 106 primary cells per sample
werewashed twice in PBS and resuspended in 100mLnucleofector
solutionwith 4 mg of plasmids accordingly. The cell/DNAmixture
was transferred into the cuvette and transfected with Lonza
4D-Nucleofector System. After transfection, the cells were cul-
tured inRPMI 1640medium supplementedwith 2%HI FBS. After
24 hours, medium was changed with the complete primary cell
culture medium and cultured for another 24 hours.

T7EN1 assays and DNA sequencing
After genomic DNA extraction, the genomic region flanking the

sgRNA target site was amplified by PCR and T7EN1 assay was
performed. T7EN1 assay was conducted as described in our
previous work (32). To identify the mutations, the PCR product
was sequenced by Sanger sequencing. The primers used for Sanger
sequencing were listed in Supplementary Table S3.

Generation of mutant single clones
About 2,000 transducedMV4-11 cells weremixed with 1mL of

methylcellulose (MethoCult H4034 Optimum, Stem Cell Tech-
nologies) in a 6-well cell culture plate and cultured at 37�C in a5%
CO2 incubator. Two weeks later, single-clone colonies were pick-
ed and cultured in 96-well plate with the complete medium
supplemented with 2% penicillin/streptomycin. The cells were
passaged every 2 or 3 days, and one-third of cells was collected for
genomic DNA extraction. Then SPRY3 target region was PCR
amplified and sequenced.

Cell number measurement
Cells (0.4 � 106) were seeded with 1 mL complete medium

in 12-well plate and AC220 was added at the indicated amounts
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to cells. After 3, 6, or 8 days, 100mL cell suspensionwas transferred
to a 96-well plate and 10 mL CCK-8 solution (DOJINDO) was
added in each well. The mixture was incubated for 3 hours in
incubator. The absorbance at 450 nm was measured using a
microplate reader. Cell number was calculated based on the
growth standard curve.

Off-target effect examination
Off-target sites were predicted using an online search tool

(http://crispr.mit.edu). Note that 3 bp mismatches compared
with the target consensus sequence were allowed. The predicted
off-target sequences were searched using UCSC browser, and 500
bp flanking sites were PCR amplified in primary cells and single-
mutation clone. The PCRproductwas subjected to T7EN1 assay to
determine the mutation. The PCR product was cloned into a TA
vector and Sanger sequenced to identify mutations.

Immunoblot analysis
Immunoblotting was performed using whole-cell lysates of

MV4-11and Ba/F3 cells supplemented with protease and phos-
phatase inhibitors (Roche). Proteins were separated by SDS-
PAGE, transferred onto polyvinylidene difluoride membranes
(Merck Millipore), and incubated with primary antibodies
listed in Supplementary Table S4. Bands were visualized
using horseradish peroxidase–conjugated secondary mouse
(Promega) or rabbit (Sigma) or sheep (R&D Systems) antibod-
ies, and quantifications were performed using the MultiGauge
software (Fujifilm).

Results
Loss-of-function CRISPR screen in AML cells identified genes
critical for drug resistance to AC220

To identify genes whose loss of function confers drug resistance
to the FLT3 inhibitor AC220, we performed a genome-wide
CRISPR genetic screen in MV4-11, a human AML line harboring
a FLT3-ITDmutation. This line was established from blast cells of
a 10-year-old male with biphenotypic B-myelomonocytic leuke-
mia. It has been shown to be a FLT3-mutant cell line expressing
the phosphorylated receptor protein, making it an appropriate
model for FLT3-ITD--related research (33). For CRISPR screening,
we transduced MV4-11 cells with lentivirus containing a pooled
genome-scale CRISPR-Cas9 knockout (GeCKO) library, targeting
18,080 human genes with 64,751 unique guide sequences (6
sgRNAs per gene; ref. 31). This library has been demonstrated to
be a very efficient tool to screen for mutations that confer resis-
tance to a BRAF inhibitor in a melanoma line. It is considered
superior to an shRNA library because of its ability to knock out
genes efficiently (31).

First, we packed the library into lentivirus with optimal titer at
an MOI of 0.3 and transduced MV4-11 cells. After viral transduc-
tion, we treated the leukemia cells with 3 nmol/L AC220, an
optimal dose chosen based on our preliminary tests (Fig. 1A).
Transduction of MV4-11 with the CRISPR library but not the
vector conferred resistance to AC220 in a subpopulation of cells
(Fig. 1B). After 14 days of treatment, we harvested cells from the
drug-treated group and extracted genomic DNA for PCR the
region containing sgRNAs. Then, we conducted next-generation
sequencing (deep sequencing) to identify sgRNAs enriched in
drug-resistant cells (Fig. 1C). For a number of genes, we found
enrichment of multiple sgRNAs that target a few genes after 14

days of AC220 treatment, suggesting that loss of these genes
contributes to AC220 resistance (Fig. 1D). Then, we ranked the
positive hits by the number of the sgRNAs and enrichment
changes per sgRNA. As summarized in Supplementary Table
S1, we identified one gene (SPRY3) with 6 sgRNAs and 12 genes
with 5 sgRNAs/gene recovered.Our highest-ranking genes include
SPRY3, SERPINE1, NUAK1, NDUFS5, SULT1A3, HDAC5,
DDRGK1, and several members in proto cadherin alpha cluster.
To further understand the pathways in AML cells conferring FLT3
inhibitor resistance, we also performed GO/GSEA/pathway anal-
yses with our top candidates and found that genes regulating cell
adhesion process are highly enriched (Supplementary Fig. S1).
This result is consistentwith theprevious reports that components
of the extracellular matrix and cell adhesionmolecules can confer
cell adhesion–mediated drug resistance to FLT3 inhibitors (34).

SPRY3 is amember of Sprouty proteins that has been shown to
function as an antagonist of RTK-mediated Ras signaling. In
addition, we also identified GSK3 as a positive hit in our screen,
and it has been well known to play an essential role in several
signaling pathways in AML.

Knockouts of SPRY3 and GSK3 confer resistance to AC220
After identifying potential positive hits from our screen, we

next validated whether loss of function of individual genes,
SPRY3 or GSK3, can cause drug resistance to AC220. SPRY3 is
our top candidate and the only gene with all 6 sgRNAs
recovered in our screen. GSK3 has two isoforms GSK3a and
GSK3b encoded by GSK3A and GSK3B genes. For GSK3A and
GSK3B, we recovered four sgRNAs and two sgRNAs, respec-
tively, in our screen. We chose GSK3 because it has been
implicated in several important downstream molecular path-
ways of FLT3, including Wnt and PI3K/Akt, in the pathogenesis
of AML. To test whether deletion of SPRY3 or GSK3 confers
resistance to AC220, we used five sgRNAs for SPRY3 and two
sgRNAs each for GSK3A and GSK3B to knock out SPRY3 and
GSK3, respectively, in the MV4-11 AML cell line. We trans-
duced cells with lentivirus-carrying sgRNAs for the respective
genes at an MOI of 20 and performed T7EN1 assays 5 days
after transduction to determine the knockout efficiency. We
found that the efficiency of gene disruption ranged from 30%
to 90% for all sgRNAs tested (Fig. 2A).

To test whether deletion of SPRY3 and GSK3 can confer resis-
tance to AC220, we infected MV4-11 with lentivirus-carrying
sgRNA and treated transduced cells with different doses of AC220.
We then measured cell viability at day 6 after treatment. Consis-
tent with our screen data, GSK3 or SPRY3 knockout cells showed
marked resistance to treatment with AC220 compared with
the control cells (Fig. 2B). Importantly, in the absence of drug
treatment, SPRY3- andGSK3-null cells growaswell as control cells
(Fig. 2C).

Because the CRISPR/Cas9 system can create a spectrum of
insertions/deletions (indels) in a cell population, we also tested
drug resistance on cloned cells containing a single mutation. We
transduced MV4-11 cells with sgRNA targeting SPRY3 and per-
formed a methylcellulose based colony-forming cell (CFC) assay.
We then picked eight clones from the CFC assay, sequenced SPRY3
in all eight clones, and found that six out of eight clones contained
SPRY3 mutations (Fig. 2D, top). We then used SPRY3–/– single-
mutation clones to test the drug resistance to AC220. Consistent
with the data from the heterogeneous population of CRISPR-
mutated cells, all six SPRY3 mutation clones showed strong
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resistance toAC220 (Fig. 2D, bottom). The IC50 of 6 SPRY3-deleted
cloneswas2.69–5.39nmol/L,whereas the IC50 for control cellswas
0.7 nmol/L. Importantly, the deletion of SPRY3 was confirmed by
Western analysis. Furthermore, we also examined other Sprouty
family members including SPRY1, SPRY2, and SPRY4, and found
that their expression was not affected in SPRY3 knockouts (Sup-
plementary Fig. S2A and S2B). Crenolanib is another potent
inhibitor of FLT3, andwe also tested whether loss of SPRY3 confers
resistance to crenolanib. We observed that SPRY3 knockout AML
cells were resistant to crenolanib (Supplementary Fig. S2C). Nota-
bly, both SPRY1 and SPRY2 are highly expressed in AMLs. To
address the question whether other Sprouty members also play a
role in AC220 resistance, we designed sgRNAs targeting SPRY1 and
SPRY2 to knock out these genes and tested AC220 resistance.
Clearly, both SPRY1 and SPRY2 knockouts confer the resistance
to AC220 in AML cells (Supplementary Fig. S2D).

SPRY3 knockout confers resistance to AC220 in primary AML
cells

In order to confirm our findings in patients with AML, we
measured SPRY3 and GSK3A expression in 4 patients with AML
who are treated with AC220 and clinically resistant to AC220
compared with 6 control AML patient samples who are FLT3-
ITDþ AML patients without AC220 treatment (Supplementary
Table S2). Consistent with our data from the MV4-11 cell line,
SPRY3 and GSK3A expression was greatly reduced in AC220-
resistant samples compared with the control samples (Fig. 3A).
All four AC220-resistant samples were collected at progression
to AC220 therapy in patients who previously responded clin-
ically. Among these four AC220-resistant patient samples, we
have pretreatment samples for three samples and measured the
expression of SPRY3 and GSK3A in these three-paired patient
samples. Remarkably, we found that the expression of SPRY3

Figure 1.

CRISPR screen in MV4-11 AML cells uncovers genes whose loss of function confers AC220 resistance. A, Cell growth curve of MV4-11 following treatment with
AC220. MV4-11 cells (0.3 � 106) were seeded in 12-well plate per well and cultured in complete medium supplemented with 1, 2, 3, 4, and 5 nmol/L
AC220 or DMSO. Cell numbers were counted using Trypan blue at the indicated times. B, Cell growth curve of CRISPR GeCKO library transduced MV4-11
following the treatment of DMSO or AC220 over 14 days. Transduced cells (1 � 106) were seeded in 6-well plate per well and cultured in complete medium
supplemented with 3 nmol/L AC220 or DMSO. Cell numbers were counted at indicated times. C, A simplified schematic of the AC220 resistance screen with
MV4-11 AML cells. The screen condition has been tested for at least three times, and the transduction of AML cells and response to AC220 was very reproducible
among three replicates. D, Enrichment of specific sgRNAs that target each gene after 14 days of AC220 treatment and identification of top candidate genes.
The x axis represents enriched genes, and the y axis represents sgRNA enrichment score, which was calculated using (sgRNA number from the reads)/(sgRNA
number in the library) � log2 (average abundance). The dotted line in the plot indicates the enrichment score for the nontargeting sgRNAs. The top 50 ranked
genes based on the enrichment score are shown.

CRISPR Screen Identifies Drug Resistance Genes

www.aacrjournals.org Cancer Res; 77(16) August 15, 2017 4405

on September 5, 2018. © 2017 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst June 16, 2017; DOI: 10.1158/0008-5472.CAN-16-1627 

http://cancerres.aacrjournals.org/


and GSK3A was dramatically reduced in the posttreatment
samples compared with their baseline (Fig. 3B), suggesting
that the expression of SPRY3 and GSK3A might be correlated
with the resistance to AC220 in patients. Furthermore, this is

also an indication that the mutations identified by our CRISPR
screen are clinically translatable.

To test the function of SPRY3 in AC220 resistance in primary
AML cells, we knocked out SPRY3 in blasts from patients with

Figure 2.

Validation of the screen that disruption of GSK3 and SPRY3 in MV4-11 causes resistance to AC220. A, T7EN1 assay analysis of specific sgRNA-mediated indels
at GSK3 or SPRY3 locus in MV4-11 cells. The MV4-11 cells were transduced with lentivirus carrying sgRNA-targeted GSK3 or SPRY3. The genomic DNA from
the cells was extracted and PCR amplified to test efficiency of gene disruptions by T7 endonuclease I assay using a 1.5% agarose gel. The lower migrating bands in
lanes indicate the disrupted gene alleles. The left plot is SPRY3; middle plot is GSK3A; right plot is GSK3B. B, MV4-11 cells were transduced with lentivirus
carrying sgRNAs targeting GSK3 or SPRY3. The drug resistance of GSK3 or SPRY3 knockouts and the control cells were measured. Cells (0.4 � 106) were plated
in 12-well plate and treated with indicated amounts of AC220 for 6 days, and cell numbers were counted. C, Cell growth curve of SPRY3 and GSK3 knockout cells
in the absence of AC220. Cells (0.4 � 106) were plated in 12-well plate and cultured in complete medium. Cell numbers were counted at indicated times.
The results from one representative experiment of three replicates are shown.D, Top, the sequence of mutant alleles in six SPRY3 knockout single clones comparing
with wild type on top. PAM sequence is labeled in gray. Bottom, cell growth curve of SPRY3 knockout single clones following the treatment with AC220. Cells
(0.4 � 106) were plated in 12-well plate and treated with indicated amounts of AC220 for 6 days and cell numbers were counted. The results from one
representative experiment of three replicates are shown.
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FLT3-ITDþ AML by transfecting Cas9 mRNA and a plasmid
containing sgRNA. In blast from patient #2, we achieved approx-
imately 50% targeting efficiency based on T7EN1 assay (Fig. 3C).
Importantly, SPRY3 deletion AML cells were resistant to AC220
compared with the parental primary AML cells (Fig. 3D). This
result clearly demonstrated that loss of function of SPRY3 results
in AC220 resistance in primary AML cells. Taken together, SPRY3
deletion in both an AML cell line and primary AML cells leads to
drug resistance to a specific FLT3 inhibitor AC220.

SPRY3 or GSK3 deletion/inhibition reactivates downstream
signaling pathways of FLT3-ITD in the presence of AC220

In order to determine themechanisms bywhich SPRY3orGSK3
deletion confers drug resistance to AC220, we explored several
different signaling pathways downstream of FLT3-ITD. FLT3-ITD
mutation leads to constitutive activation of FLT3 kinase, with
subsequent constitutive activation of its downstream signaling
pathways including Ras/MAPK kinase pathway, STAT5, and PI3K/
Akt pathway (9, 10). Moreover, it was also reported that cross-talk

Figure 3.

Disruption of SPRY3 in primary AML leads to resistance to AC220. A, Left, expression of SPRY3 was measured by real-time PCR in control and AC220-resistant
FLT3-ITDþ AML patient samples. The expression level of SPRY3 was normalized to housekeeping PPIB gene. Right, expression of GSK3A was measured by
real-time PCR in control and AC220-resistant FLT3-ITDþ AML patient samples. The expression level of GSK3A was normalized to housekeeping PPIB gene.
B, Left, expression ofSPRY3wasmeasured by real-timePCR in three pairs of pre- andpost-AC220 treatment FLT3-ITDþAMLpatient samples. The expression level of
SPRY3 was normalized to housekeeping PPIB gene. Right, expression of GSK3A was measured by real-time PCR in three pairs of pre- and post-AC220
treatment FLT3-ITDþ AML patient samples. The expression level of GSK3A was normalized to housekeeping PPIB gene. C, T7EN1 assay analysis of specific
sgRNA-mediated indels at SPRY3 locus in the control and two FLT3-ITDþ AML patient samples. D, SPRY3 was deleted in FLT3-ITDþ AML patient sample (#2) by
transient transfection of Cas9 mRNA and a plasmid containing sgRNA. The resistance to AC220 was measured after 6 days of treatment. The results
from one representative experiment of three replicates are shown.
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between FLT3 and Wnt pathways plays a critical role in the
pathogenesis of FLT3-ITDþAML (35, 36). As a potent and specific
inhibitor of FLT3, AC220 can effectively inhibit all signaling
downstream of FLT3. Because there is no wild-type control line
for MV4-11, we used Ba/F3 as an alternative line to explore the
pathways downstream of FLT3-ITD. Ba/F3 is an IL3-dependent
murine pro–B-cell line, and stable expressionof FLT3 in these cells
allows IL3 to be substituted by FLT3 ligand. Consistent with
previously published work, addition of FLT3 ligand augmented
phosphorylation of AKT, ERK, and S6 and increased total levels of

b-catenin, suggesting activation of PI3K/Akt, MAPK, mTOR, and
Wnt pathways, respectively (Supplementary Fig. S3A). Moreover,
expression of FLT3-ITD led to constitutive activation of AKT, ERK,
and mTOR signaling (Supplementary Fig. S3A), indicating that
the presence of FLT3-ITD in these cells enables ligand-indepen-
dent activation of FLT3 downstream pathways.

Importantly, treating MV4-11 cells with AC220 for 2 hours
reduced b-catenin levels as well as phosphorylation of STAT5, AKT,
ERK, and S6 (Fig. 4A), suggesting inhibition of all downstream
signaling pathways. To further confirm the effect of AC220 on

Figure 4.

AC220 inhibits multiple FLT3-ITD
downstream signaling pathways, and
knockouts of SPRY3 or GSK3 reactivate
RAS/ERK and Wnt signaling pathways in
the presence of AC220. A, Western blot
analysis of AC220-treated MV4-11 cells.
Cells (0.3 � 106) were starved for
overnight and treated with AC220 at
indicated concentrations. Cells were
harvested after 2 hours of treatment and
lysed. Then Western blot analysis was
performed. The quantification of bands is
shown below the gel. B, Western blot
analysis of AC220-treated wild-type and
SPRY3 knockout cells. Note that 0.3� 106

wild-type and SPRY3 knockout cells were
starved overnight and treated with 10
nmol/L AC220 for 6 hours. The cells were
harvested and lysed, and Western blots
analysis was carried out. C, Western blot
analysis of AC220-treated wild-type and
GSK3 knockout cells. Cells (0.3 � 106)
were starved overnight and treated with
10 nmol/L AC220. Cells were harvested at
indicated times and lysed. Western blots
analysis was performed.
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FLT3-ITDsignaling,we tested the effect ofAC220 inBaF3FLT3-ITDþ

cells as well. Similar to the data observed in MV4-11, we found that
AC220 inhibits PI3K/Akt,MAPK,mTOR, andWntpathways that are
all downstream pathways of FLT3-ITD (Supplementary Fig. S3B).

In terms of the mechanism of AC220 resistance, we speculated
that genemutations that can rescue signaling downstreamof FLT3
kinase may confer resistance to AC220. As SPRY3 and GSK3 are
known inhibitors of FGF/Ras/MAPK and Wnt signaling, respec-
tively, we hypothesized that their loss of function (deletions)
would restore Ras/MAPK andWnt signaling downstream of FLT3
in the presence of AC220, thereby causing cells to be resistant to
AC220. To test this hypothesis, we performed a series of experi-
ments to probe for the signaling molecules that potentially
regulate drug resistance due to SPRY3 and GSK3 disruptions. As
we expected, SPRY3 deletion led to increased phosphorylation of
ERK in AC220-treated group comparedwith thewild type-control

and specifically rescued the inhibition of RAS/MAPK signaling by
AC220 inMV4-11 cells (Fig. 4B).GSK3A orGSK3B knockout also
led to increased b-catenin in the presence of AC220, suggesting
activation of Wnt signaling in the knockouts in the presence of
AC220 (Fig. 4C).

Pharmacologic inhibition of MAP kinase and Wnt signaling
pathway resensitizes AML cells to AC220

To further test our hypothesis that reactivation of the signaling
downstream of FLT3-ITD is the mechanism underlying the resis-
tance to AC220, we used a pharmacologic approach to modulate
FGF signaling pathway. We treatedMV4-11 cells with either FGF1
or FGF inhibitor PD161570 in combination with AC220. Con-
sistent with our hypothesis, we observed that FGF1 treatment
confers the cells resistant to AC220, whereas FGF inhibitor
PD161570 sensitizes cells to AC220 (Fig. 5A). Biochemically, we

Figure 5.

Pharmacologic inhibition of MAP kinase and
Wnt signaling pathway resensitizes AML
cells to AC220. A, Growth curve of MV4-11
cells that were treated with 1 ng/mL FGFa or
50 nmol/L PD161570 or 1.5 mmol/L Chiron in
combination with different doses of AC220.
Cell numbers were counted after 3 days. B,
Growth curve of MV4-11 or SPRY3 knockout
MV4-11 cells that were treated with either
DMSO or ERK inhibitor U0126 at 5 mmol/L in
combination with different doses of AC220.
Cell numbers were counted after 3 days. C,
Growth curve of MV4-11 or GSK3A knockout
MV4-11 cells that were treated with either
DMSO or b-catenin inhibitor PNU74654 at 10
mmol/L in combination with different doses
of AC220. Cell numbers were counted
after 3 days.
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observed that FGF1 treatment also increased phosphorylation of
ERK (Supplementary Fig. S3C), suggesting FGF1 rescued the
inhibition of MAPK signaling by AC220 in MV4-11.

To testwhether activationofWnt signaling can confer resistance
to AC220, we treatedMV4-11 FLT3-ITDþ cells with a potent GSK3
inhibitor Chiron that activates Wnt signaling. We found that
treatment of Chiron confers AML cells resistant to AC220. Bio-
chemically, AC220 treatment reduced phosphorylation of AKT
and ERK as well as the total protein levels of b-catenin inMV4-11.
Addition of GSK3 inhibitor Chiron to AC220-treated cells
increased total b-catenin levels without affecting other signaling
pathways (Supplementary Fig. S3B and S3D), suggesting that
GSK3 inhibition restores Wnt signaling in the presence of AC220.

To prove that MAP kinase is the major downstream effector of
SPRY3 to confer resistance to AC220, we treated SPRY3 KO with
U0126, a highly selective inhibitor of both MEK1 andMEK2, and
tested resistance to AC220. Supporting our hypothesis that MAP
kinase is indeed the major downstream effector of the AC220

resistance pathway,we found that treatmentofU0126 resensitizes
AML cells to AC220 (Fig. 5B).Moreover, we also treated AML cells
with a b-catenin inhibitor PNU74654 and found that it also
resensitizes AML cells to AC220 (Fig. 5C). Together, these findings
strongly suggest that reactivation of MAP kinase or Wnt signaling
is the key mechanism to cause AC220 resistance in AML.

SPRY3 expression is downregulated in GSK3
knockout AML cells

The similar resistance phenotype of GSK3 and SPRY3 knock-
outs suggests that these twogenesmight be functionally linked. To
further understand the connection between GSK3 and SPRY3, we
measured the expression of SPRY3 in GSK3 knockout AML cells
and GSK3 expression in SPRY3 knockout AML cells by real-time
PCR. Interestingly, we found that SPRY3 expression is markedly
reduced in GSK3 knockout cells (Fig. 6A). Conversely, expression
of GSK3 is not significantly altered in SPRY3 knockout AML cells
(Fig. 6B and C). Consistently, the protein level of SPRY3 was

Figure 6.

Expression of SPRY3 is markedly reduced in GSK3A and GSK3B knockout AML cells. A, Expression of SPRY3 was measured by real-time PCR in MV4-11,
SPRY3, GSK3A, andGSK3B knockout MV4-11 cells. The expression level of SPRY3was normalized to housekeeping PPIB gene. B, Expression ofGSK3Awasmeasured
by real-time PCR in MV4-11, SPRY3, GSK3A, and GSK3B knockout MV4-11 cells. The expression level of GSK3A was normalized to housekeeping PPIB gene.
C, Expression ofGSK3Bwasmeasured by real-time PCR in MV4-11, SPRY3, GSK3A, andGSK3B knockout MV4-11 cells. The expression level ofGSK3Awas normalized
to housekeeping PPIB gene. D, The protein level of SPRY3 was assessed by Western blot in GSK3A and GSK3B knockout MV4-11 cells.
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diminished in GSK3 knockout AML cells (Fig. 6D). These data
suggest that GSK3might be the upstream regulator of SPRY3, and
GSK3 regulates transcription of SPRY3 in the acquired AC220
resistance pathway.

Taken together, our results demonstrate that AC220 inhibits
multiple pathways downstream of FLT3-ITD, whereas deletion of
SPRY3 or GSK3 restores RAS/MAPK or Wnt signaling to confer
resistance to AC220. SPRY3 might be a downstream effector of
GSK3 in AC220 resistance signaling pathway.

No off-target mutagenesis was observed in SPRY3 knockout
CRISPR/Cas9 has been demonstrated to create off-target

mutations depending upon cell type and experimental setting
(37, 38). To examine potential off-target effects, we predicted
the possible off-target sites using an online tool (http://crispr.
mit.edu) and identified at least six potential off-target sequences
with high score for SPRY3 sgRNA #4 (Supplementary Fig. S4A).
Because there is only one predicted off-target sequence within a
coding region (NM-001004439), we examined this site exten-
sively. We PCR-amplified genomic DNA from primary AML
cells and sequenced the PCR product of the potential off-target
locus. When we scrutinized the sequencing data of four clones,
we found that there are no mutations at this potential off-target
site (Supplementary Fig. S4B). Although we cannot exclude
the possibility of mutations at other sites, the off-target effects
are unlikely given the phenotypes are observed with multiple
sgRNAs.

Discussion
Pooledmutagenesis screen for genemutations' mediating drug
resistance

The CRISPR/Cas system, a powerful genome-editing approach,
was initially discovered by several groups as an effective defense
mechanism utilized by bacteria against virus infection (37–39).
Subsequently, several seminal publications clearly demonstrated
the possibility of using this technology to achieve high efficiency
genome editing in mammalian systems, both mouse and human
(40–42). Different versions of the guide RNA can be used to target
Cas9 to specific sequences for genome engineering in cells as well
as multicellular organisms (37, 39, 43). More recently, Dr. Feng
Zhang's group at the Broad Institute of MIT and Harvard devel-
oped a CRISPR knockout library (GeCKO) and validated this
system by performing a genome-wide screen for genes conferring
drug resistance to a therapeutic BRAF inhibitor, Vemurafenib
(PLX), in A375 melanoma cells. The screen revealed genes whose
loss of function confers melanoma cells resistant to PLX (31). Of
note, several other genome-wide CRISPR pooled screens have
uncovered mediators of drug resistance, pathogen toxicity as well
as defined cell-essential genes of the human genome (44–48). In
our screen, for a number of genes, we found enrichment of
multiple sgRNAs that target each gene after 14 days of AC220
treatment, suggesting that loss of these particular genes contri-
butes to AC220 resistance. Thus, CRISPR has been proved to be a
very useful tool to screen for drug-resistant mutants in several
types of cancer cells including AML.

Downstream signaling molecules regulating drug resistance to
FLT3 inhibitors

Given the importance of FLT3 mutations in AML, TKIs have
been developed to treat patients carrying FLT3-ITD mutations.

Quizartinib (AC220), a more recent kinase inhibitor of FLT3,
that has high selectivity for FLT3 is currently under clinical
study. It has been shown to have very selective in vitro and in
vivo activity and sensitivity against FLT3 (14, 49). In compar-
ison with other FLT3 inhibitors, AC220 appears to be 1 to 2
orders of magnitude more potent in vivo. Moreover, it has a
very long plasma half-life due to which it has improved
pharmacokinetics. Interestingly, it has been reported that 11
of 45 patients (24%) receiving AC220 experienced transient
clinical responses, and 4 patients achieved complete remission
in a phase I study in relapsed/refractory AML (14, 49–51).
Based on these promising phase I data, a phase II trial of AC220
in relapsed/refractory patients with FLT3-ITD mutations has
been carried out. In this phase II study, as a monotherapy,
AC220 at multiple doses demonstrated a high response rate
in relapsed/refractory FLT3-ITD–positive patients. The treat-
ment results in an overall better survival in FLT3-ITD–positive
AML patients compared with historic survival data reported
(14, 49–51).

Importantly, even though no FLT3 inhibitors have been
approved for clinical use yet, several resistant mechanisms of
FLT3 inhibitors have been reported through early clinical stud-
ies. Some studies identified the mutations in FLT3 confer drug
resistance (17, 52, 53). However, the drug-resistant mutations
in the downstream pathways of FLT3 have not been systemat-
ically studied. Our study for the first time has uncovered that
loss-of-functions of SPRY3 and GSK3 cause drug resistance. It
also provides new insight into the signaling pathways down-
stream of FLT3-ITD in AML. Intriguingly, we found that expres-
sion of SPRY3 is dramatically reduced in GSK3 knockout AML
cells. This result raises the possibility that GSK3 regulates
transcription of SPRY3 directly or indirectly in acquired AC220
resistance pathway. It is tempting to speculate this regulation is
through Wnt signaling. It would be important to explore the
detailed mechanism by which GSK3 controls transcription of
SPRY3 in AML cells.

Relevance of identified drug-resistant mutations to human
leukemia

In our screen, we identified SPRY3 and GSK3 as positive hits,
and loss of function of SPRY3 or GSK3 leads to the resistance of
AML cells to AC220. Importantly, we confirmed this resistance
effect in primary leukemia samples. Furthermore, we also
demonstrated that the expression level of SPRY3 and GSK3A
correlates with clinical AC220 resistance in human leukemia
samples. All these data strongly suggest that the genes we
identified in our screen play a critical role in AC220 resistance
in primary human AML samples. Importantly, we also showed
that treating cells with either FGF signaling inhibitor or MAPK
inhibitor or b-catenin inhibitor greatly increases the sensitivity
of AML cells to AC220. This could be potentially important for
developing future FLT3-ITDþ AML synergistic anti-AML thera-
py. It would be interesting to test whether treating patients who
are clinically resistant to AC220 with FGF inhibitor or MAPK
inhibitor would resensitize leukemic cells to AC220. Of note,
our conclusion is also further supported by a recent report
showing that FGF2 promoted resistance to AC220 through
activation of FGFR1 and downstream MAPK effectors in AML
cells (54). In summary, our study identified and delineated
novel functional roles for SPRY3 and GSK3 genes whose dele-
tions lead to FLT3 inhibitor resistance and provided new
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insights into the downstream signaling pathways regulated by
FLT3 (Fig. 7).
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Figure 7.

Model of SPRY3 or GSK3 knockouts confers resistance to AC220. FLT3-ITD constitutively activates downstream signaling pathways of FLT3. Treatment of
FLT3-ITDþ cells with AC220 inhibits all the pathways. SPRY3 or GSK3 knockouts reactivate downstream signaling pathways of FLT3-ITD and confer resistance to
AC220. The untreated or AC220-sensitive AML cells can develop drug resistance during the therapy because of SPRY3 or GSK3 mutations. The major
downstream signaling pathways are Wnt and MAP kinase pathways.
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